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Abstract. The structure of representations describing systems of free particles in the theory with
the invariance group SO(1, 4) is investigated. The property of the particles to be free means as usual
that the representation describing a many-particle system is the tensor product of the corresponding
single-particle representations (i.e. no interaction is introduced). It is shown that the mass operator
contains only continuous spectrum in the interval(−∞,∞) and such representations are unitarily
equivalent to ones describing interactions (gravitational, electromagnetic etc). This means that
there are no bound states in the theory and the Hilbert space of the many-particle system contains a
subspace of states with the following property: the action of free representation operators on these
states is manifested in the form of different interactions. Possible consequences of the results are
discussed.

1. Introduction

Existing quantum theories are usually based on the following procedure: the Lagrangian of
the system under consideration is written asL = Lm +Lg +Lint whereLm is the Lagrangian
of ‘matter’, Lg is the Lagrangian of gauge fields andLint is the interaction Lagrangian. The
symmetry conditions do not defineLint uniquely since at least the interaction constant is
arbitrary. Nevertheless such an approach has turned out to be highly successful in quantum
electrodynamics, electroweak theory and quantum chromodynamics. At the same time the
difficulties in constructing quantum gravity have not been overcome.

In the literature lots of possibilities have been considered when interactions are not directly
introduced but manifest themselves as a consequence of a non-trivial structure of spacetime.
For example, in Kaluza–Klein and superstring theories interactions arise as a consequence of
extra dimensions of spacetime while in chiral theories they arise as a consequence of the fact
that the Lagrangian is defined on a nonlinear manifold. On the other hand, as it has become
clear already in 30th, there is no operator corresponding to spacetime and therefore the notion
of the latter on a quantum level is not quite clear.

The problem arises whether the possibility exists that quantum theory is fully defined by
the choice of the symmetry group (i.e. there is no need to explicitly introduce Lagrangians,
interactions and spacetime) and such a theory can effectively describe the existing interactions.

In this paper we consider a model which in our opinion can shed light on this problem.
We choose the de Sitter group SO(1, 4) (more precisely its covering groupSO(1, 4)) as
the symmetry group. We require as usual that the elementary particles are described
by unitary irreducible representations (UIRs) of this group and different realizations of
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such representations are described in section 2. We then assume that the representation
describing the many-particle system is the tensor product of the corresponding single-particle
representations. According to the usual philosophy this means that the particles are free and
no interaction is introduced. In section 3 we explicitly calculate the free many-particle mass
operator and show that the spectrum of this operator contains the whole interval(−∞,∞).
As shown in section 4, such an operator is unitarily equivalent to the mass operator containing
interactions (gravitational, strong, electromagnetic etc). Finally, section 5 is a discussion.

It is worth noting that the unusual properties of SO(1, 4)-invariant theories considered
in this paper are specific only for these theories while SO(2, 3)-invariant theories have many
common features with Poincaré-invariant ones (the mass of the elementary particle coincides
with the minimal value of its energy, the mass of the two-particle system has minimal value
m1 +m2 etc [1]).

2. Realizations of single-particle representations of the SO(1, 4) group

The de Sitter group SO(1, 4) is the symmetry group of the four-dimensional manifold which
can be described as follows. If(x0, x1, x2, x3, x4) are the coordinates in five-dimensional
space, the manifold is the set of points satisfying the condition

x2
0 − x2

1 − x2
2 − x2

3 − x2
4 = −R2 (1)

where R > 0 is some parameter. Elements of a map of the point(0, 0, 0, 0, R)
(or (0, 0, 0, 0,−R)) can be parametrized by the coordinates(x0, x1, x2, x3). If R is very
large then such a map proceeds to Minkowski space and the action of the de Sitter group on
this map—to the action of the Poincaré group. The quantityR2 is often written asR2 = 3/3
where3 is the cosmological constant. Existing astronomical data show that3 is very small
and the usual estimates based on popular cosmological models giveR > 1026 cm. On the
other hand, in models based on de Sitter cosmology,R0 is related to the Hubble constantH as
R = 1/H and in this caseR is of the order 1027 cm [2].

The representation generators of the SO(1, 4) groupLab (a, b = 0, 1, 2, 3, 4, Lab =
−Lba) should satisfy the commutation relations

[Lab, Lcd ] = −ι(ηacLbd + ηbdLas − ηadLbc − ηbcLad) (2)

whereηab is the diagonal metric tensor such thatη00 = −η11 = −η22 = −η33 = −η44 = 1.
In conventional quantum theory elementary particles are described by UIRs of the

symmetry group or its Lie algebra. If one assumes that the role of the symmetry group is
played by the Poincaré group, then the representations are described by ten generators—six
generators of the Lorentz group and the four-momentum operator. In unitsc = h̄ = 1 the
former are dimensionless while the latter has the dimension(length)−1. If, however, the
symmetry group is the de Sitter group SO(1, 4), then all the generators in unitsc = h̄ = 1
are dimensionless. There exists wide literature devoted to the UIRs of this group (see, e.g.,
[3–9]). In particular the first complete mathematical classification of UIRs has been given
in [3], the three realizations of the UIRs discussed later were first considered in [4] and their
physical context was discussed in [5]. The reader can explicitly verify that for all realizations
the generators indeed satisfy equation (2).

If s is the spin of the particle under consideration, then we use‖ . . . ‖ to denote the norm
in the space of the UIR of group SU(2) with spins. Let v = (v0 = (1 + v2)1/2, v) be the
element of the Lorentz hyperboloid of four velocities and dv be the Lorentz invariant volume
element on this hyperboloid. Then, one can realize the UIR under consideration in the space
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of functions{f1(v), f2(v)} on two Lorentz hyperboloids with the range in the space of the UIR
of group SU(2) with spins such that∫

(‖f1(v)‖2 + ‖f2(v)‖2) dv <∞. (3)

The explicit calculation shows that the action of the generators onf1(v) has the form

M = l(v) + s N = −ιv0
∂

∂v
+
s× v
v0 + 1

B = µv + ι

(
∂

∂v
+ v

(
v
∂

∂v

)
+

3

2
v

)
+
s× v
v0 + 1

L04 = µv0 + ιv0

(
v
∂

∂v
+

3

2

)
(4)

whereM = {L23, L31, L12}, N = {L01, L02, L03}, B = −{L14, L24, L34}, s is the spin
operator andl(v) = −ιv × ∂/∂v. The action ofLab on f2(v) is obtained from equation (4)
by the substitutionµ→−µ.

Such a realization is used to obtain the possible closest analogy between representations of
the SO(1, 4)and the Poincaré group. It is easy to see that the operatorsM andN in equation (4)
have the same form as for the standard realization of the single-particle representations of the
Poincaŕe group (see, e.g., [10, 11]) while the contraction of equation (4) into the standard
realization of the Poincaré group is accomplished as follows. Denotem = µ/R, P = B/R
andE = L04/R and consider the action of the generators on functions which do not depend on
R in the usual system of units. Then, as follows from equations (1) and (4), in the limitR→∞
we obtain the standard representation of the Poincaré group for a particle with massm, since
P = mv, E = mv0 (in this case one represents the Poincaré group with negative energy on
the second hyperboloid).

Since the representation generators of the SO(1, 4) group are dimensionless (in units
c = h̄ = 1), any quantal description in SO(1, 4)-invariant theory involves only dimensional
quantities. In particular, as seen from equation (4), the quantal description of particles in such
a theory does not involve any information about the quantityR (this property is clear from
the fact that the elements of the SO(1, 4) group describe only homogeneous transformations
of the manifold defined by equation (1)). The latter comes into play only when we wish to
interpret the results in terms of quantities used in Poincaré-invariant theory. Therefore, if we
assume that de Sitter invariance is fundamental and Poincaré invariance is only approximate,
it is reasonable to think that the de Sitter massesµ are fundamental whilem andR are not (see
also the discussion in [12]).

It is also possible to realize the UIR in the space of functionsϕ(u) on the three-dimensional
unit sphereS3 in four-dimensional space with the range in the space of the UIR of the
group SU(2) with spins such that∫

‖ϕ(u)‖2 du <∞ (5)

where du is the SO(4)-invariant volume element onS3. Elements ofS3 can be represented
asu = (u, u4) whereu4 = ±(1− u2)1/2 for the upper and lower hemispheres, respectively.
Then, the explicit calculation shows that for this realization the generators have the form

M = l(u) + s B = ιu4
∂

∂u
− s

N = ι
(
∂

∂u
− u

(
u
∂

∂u

))
−
(
µ +

3ι

2

)
u + u× s− u4s
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L04 =
(
µ +

3ι

2

)
u4 + ιu4u

∂

∂u
. (6)

Since equations (3) and (4) on the one hand and equations (5) and (6) on the other
are different realizations of one and the same representation, there exists a unitary operator
transforming functionsf (v) into ϕ(u) and operators (4) into operators (6). For example, in
the spinless case

ϕ(u) = exp

(
− ι

2
µ logv0

)
v

3/2
0 f (v) (7)

whereu = −v/v0. In view of this relation, the sphereS3 is usually interpreted in the literature
as the velocity space (see, e.g., [7, 8]) but, as argued in [9], there are serious arguments for
interpretingS3 as the coordinate space. Later, we give additional arguments in favour of this
point of view.

As follows from equation (1), ifx0 is fixed then the set of points satisfying this relation is
the three-dimensional sphereS3(R1) with radiusR1 = (R2 + x2

0)
1/2. This sphere is invariant

under the action of the SO(4) subgroup of the SO(1, 4) group. The operatorsB andM are the
representation generators of the SO(4) subgroup. We can choosex = R1u as the coordinates
onS3(R1). In these coordinates the operatorsB andM given by equation (6) are the generators
of the representation of the group of motions ofS3(R1) induced from the representation of the
SO(3) subgroup with generatorss.

Consider a vicinity of the south pole ofS3(R1) such that|x| � R1 and assume that
x0� R. Then, the generators in equation (6) have the form

B = Rp M = l(x) + s N = −Rp L04 = mR (8)

wherep = −ι∂/∂x andm = µ/R. Therefore,B/R is the de Sitter analogue of the momentum
operator, butL04/R in this realization is not the de Sitter analogue of the energy operator.

The reason for such a situation is as follows. In Poincaré-invariant theories one can
consider wavefunctions defined on the conventional three-dimensional spaceR3. The operators
M andP are the representation generators of the group of motions ofR3. From the remaining
generators,E andN , onlyE commutes withM andP . For this reasonE can be chosen as
the operator responsible for the evolution of the system under consideration while stationary
states are eigenstates ofE. In the SO(1, 4) case one can consider wavefunctions defined on
S3(R1) at different values ofx0. However, none of the generatorsL04,N commutes with all
the operatorsM andB. At the same time the operatorEdS = (L2

04 +N2)1/2 satisfies this
property. HenceEdS can be treated as the operator responsible for the evolution. At conditions
described by equation (8),EdS = R(m2 + p2)1/2 and therefore,EdS can be considered as the
de Sitter analogue of the energy operator.

The inconvenience of working withB as the de Sitter analogue of the momentum operator
is that different components ofB commute with each other only whenR→∞. We can define
the operatorsQ+ = (L1+, L2+, L3+) andQ− = (L1−, L2−, L3−), where the± components
of five vectors are defined asx± = x4 ± x0. Then, as follows from equation (2), different
components ofQ+ commute with each other and the same is valid forQ−.

It is easy to see that 2u/(1− u4) is the stereographic projection of the point(u, u4) ∈ S3

onto three-dimensional space. Now we usex to denote the quantityx = 2Ru/(1− u4). In
the space of functionsϕ(x) onR3 with the range in the space of the UIR of the group SU(2)
with spins and such that∫

‖ϕ(x)‖2 d3x <∞ (9)
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the generators of the UIR of the SO(1, 4) group can be realized as

M = l(x) + s L+− = −2(µ + xp) + 3ι Q+ = −2Rp

Q− = 1

2R
(−2µx + x2p− 2x(xp) + 3ιx + 2(s× x)). (10)

The UIR realized by equations (4), (6) or (10) belongs to the so-called principal series.
It can be characterized by the condition thatµ2 > 0, i.e.µ is real. In contrast with UIRs of
the Poincaŕe group, the sign ofµ does not make it possible to distinguish UIRs describing
particles and antiparticles (see, e.g., the discussion in [7]) and the UIRs withµ and−µ are
unitarily equivalent.

The Casimir operator of second order can be written as

I2 = −
∑
ab

LabL
ab = 1

2
(L+−)2 − (Q+Q− +Q−Q+)− 2M2. (11)

A direct calculation shows that in the case described by equations (4), (6) and (10)

I2 = 2

(
µ2 − s2 +

9

4

)
. (12)

In Poincaŕe-invariant theories the spectrum of the mass operator can be defined as the
spectrum of the energy operator in the subspace of states with zero total momentum. As
follows from equation (10), for UIRs of the SO(1, 4) group corresponding to the principal
series, the spectrum of the mass operator can be defined from the condition that the action of
L+− on states with zero momentum is equal to−2µ+ 3ι. The presence of 3ι in this expression
does not contradict the Hermiticity ofL+− sinceL+− does not commute withQ+.

3. Free many-particle mass operator in the SO(1, 4)-invariant theory

The representation describing a system ofN non-interacting particles is constructed as
the tensor product of corresponding single-particle representations and the representation
generators are equal to the sums of single-particle generators, i.e.

Lab =
N∑
n=1

L
(n)
ab (13)

whereL(n)ab are generators for thenth particle. Each generator acts through variables of its
‘own’ particle, as described in the preceding section and through variables of other particles it
acts as the identity operator.

The tensor product of single-particle representations can be decomposed into the direct
integral of UIRs and there exists a well elaborated general theory [13]. In the given case,
among UIRs there may not only be representations of the principal series but also UIRs of
other series.

We first consider the case of two particles 1 and 2. Suppose that the UIRs for them are
realized as in equation (4). We introduce conventional masses and momentamj = µj/R,
pj = mjvj (j = 1, 2). We can define the variables describing the system as a whole and the
internal variables. The usual non-relativistic variables are

P = p1 + p2 k = m2p1−m1p2

m1 +m2
. (14)

Then, in the approximation when particle velocities are very small, it follows from equations (4)
and (13) that the two-particle generators have the form

M = l(P ) + S N = −ι(m1 +m2)
∂

∂P
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L04 = R(m1 +m2) + ι

(
k
∂

∂k
+

3

2

)
+ ι

(
P
∂

∂P
+

3

2

)
B = RP + ι(m1 +m2)

∂

∂P
(15)

whereS = l(k)+s1 +s2. Comparison of equations (4) and (15) forM shows thatS plays the
role of the spin operator for the system as a whole (in full analogy with conventional quantum
mechanics).

By analogy with equation (12) we can define the mass operatorMdS for the system as a
whole. Namely, ifI2 is the Casimir operator for the system as a whole defined by this equation,
then

I2 = 2(M2
dS− S2 + 9

4). (16)

In turn, the conventional mass operatorM can be defined asMdS/R.
As follows from equations (15) and (16), for slow particles of first order in 1/R

M = m1 +m2 +
ι

R

(
k
∂

∂k
+

3

2

)
. (17)

We shall see later that this expression is correct for any velocities and of any order in 1/R if
only the representations of the principal series are taken into account.

Equation (17) means that for very slow particles the de Sitter correction to the classical
non-relativistic Hamiltonian is equal to1Hnr = (kr)/R wherer = x1 − x2 is the vector of
the relative distance between the particles (this quantity is conjugated withk). As follows from
the classical equations of motion, ¨r = r/R2. Therefore, the correction corresponds to the well
known fact that in classical SO(1, 4)-invariant theory there exists antigravity and the force of
(cosmological) repulsion between particles is proportional to the distance between them. It
is also interesting to note that the de Sitter antigravity is in some sense even more universal
than usual gravity: the force of repulsion does not depend on the parameters characterizing
the particles (even on their masses).

Now we again consider the case of two particles but suppose that the UIRs for them are
realized as in equation (10). We introduce the standard non-relativistic variables

X = m1x1 +m2x2

m1 +m2
= µ1x1 +µ2x2

µ1 +µ2
r = x1− x2. (18)

Then, a direct calculation of the two-particle generators gives

L+− = −2(µ1 +µ2 +XP ) + 2ι

(
r
∂

∂r
+ 3

)
Q+ = −2RP M = l(X) + S

Q− = −(m1 +m2)X +
1

2R

(
X2P +

m1m2

(m1 +m2)2
r2P

−2ι

(
rX

∂

∂r
− ιm2 −m1

m1 +m2
r2 ∂

∂r
− 2X(XP )− 2m1m2

(m1 +m2)2
r(rP )

+2ιX

(
r
∂

∂r

)
+ 2ιr

(
X
∂

∂r

)
+

2ι(m2 −m1)

m1 +m2
r

(
r
∂

∂r

)
+ 6ιX

+
3ι(m2 −m1)

m1 +m2
r

)
+

1

R

(
(s1 + s2)×X +

m2s1−m1s2

m1 +m2
× r

)
(19)

whereS = l(r) + s1 + s2 andP = −ι∂/∂X.
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A direct calculation shows that, as a consequence of equations (11), (16) and (19),

M2
dS=

(
µ1 +µ2 − ι

(
r
∂

∂r
+

3

2

))2

+
µ1µ2

(µ1 +µ2)2

(
r2P 2 − 2(rP )2

)
+
ι(µ2 − µ1)

µ2 +µ1

(
2(rP )

(
r
∂

∂r

)
+ 3rP − r2

(
P
∂

∂r

))
+

4(µ2s1− µ1s2)(r × P )
µ1 +µ2

(20)

M2 =
(
m1 +m2 − ι

R

(
r
∂

∂r
+

3

2

))2

+
m1m2

R2(m1 +m2)2

(
r2P 2 − 2(rP )2

)
+
ι(m2 −m1)

R2(m2 +m1)

(
2(rP )

(
r
∂

∂r

)
+ 3rP − r2

(
P
∂

∂r

))
+

4(m2s1−m1s2)(r × P )
R2(m1 +m2)

. (21)

The expressions for bothMdS andM have been explicitly written down in order to stress that if
MdS is expressed in terms of de Sitter masses then it does not depend onR. Such a dependence
arises only when one considers the conventional mass operator in terms of conventional masses
(see the discussion in the preceding section).

As follows from equation (21), the decomposition of the tensor product of two UIRs
belonging to the principal series contains not only UIRs belonging to this series. Indeed, the
spectrum of the operatorM2 is not positive definite. This is clear, for example, from the fact
that for very large values of|P | and values ofr collinear withP , M2 becomes negative.
However, ifR is very large then such values of|P | are practically impossible. It is obvious
from equation (21) that for realistic values of|P | the contribution toM2 of the UIRs not
belonging to the principal series is a small correction of order 1/R2.

If only the contribution of UIRs belonging to the principal series is taken into account,
then the problem of determiningM2 can be considered as follows. Since the tensor product of
two UIRs can be decomposed into the direct integral of UIRs [13] and any UIR of the principal
series is unitarily equivalent to equation (10) with some operatorss and values ofµ, we can
conclude that any representation of the SO(1, 4) group containing only UIRs of the principal
series is unitarily equivalent to the representation defined by the generators

M = l(X) + S L+− = −2(MdS +XP ) + 3ι Q+ = −2RP

Q− = 1

2R
(−2MdSX +X2P − 2X(XP ) + 3ιX + 2(S ×X)) (22)

where the generatorsS andMdS act only through the internal variables of the system under
consideration. By analogy with the case of UIRs considered in the preceding section, it is
clear thatMdS can be determined by considering the action ofL+− on the states withP = 0:
the action ofL+− on such states is equal to 2(−MdS + 3ι/2) (recall that the sign ofMdS does
not play a role). Therefore, as follows from equation (19), the mass operator in the given case
is unitarily equivalent to the operator

M = m1 +m2 − ι

R

(
r
∂

∂r
+

3

2

)
. (23)

In particular, the positive part of the operator (21) is unitarily equivalent to the square of the
operator given by equation (23). This is in agreement with the ‘common wisdom’ according
to which the spectrum of the mass operator is defined by its reduction on the (generalized)
subspace of states withP = 0.
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Comparison of equations (17) and (23) is an additional argument in treatingS3(R1) as the
coordinate space, at least at very small velocities (note thatr = ι∂/∂k, k = −ι∂/∂r). We will
use momentum and coordinate representations depending on convenience. In the first case the
operator given by (17) acts in the space of functionsf (k) such that∫

|f (k)|2 d3k <∞ (24)

and in the second case—in the space of functionsϕ(r) such that∫
|ϕ(r)|2 d3r <∞ (25)

(here and henceforth we will consider only the spinless case for simplicity)—the functionsf (k)

andϕ(r) are Fourier transforms of each other.
In spherical coordinatesr∂/∂r = r∂/∂r wherer = |r|. Therefore, in these coordinates

the operator (23) does not act through angular variables. We can consider the action of this
operator in the space of functionsϕ(r) such that∫

|ϕ(r)|2r2 dr <∞. (26)

The eigenvalue problem

(m1 +m2)ϕλ(r)− ι

R

(
r

dϕλ(r)

dr
+

3

2
ϕλ(r)

)
= λϕλ(r) (27)

has the solution

ϕλ(r) = 1

r

(
R

2πr

)1/2

exp[ιR(λ−m1−m2) logr] (28)

where we assume thatr is given in some dimensional units. Then∫ ∞
0
ϕλ(r)

∗ϕλ′(r)r2 dr = δ(λ− λ′)
∫ ∞
−∞

ϕλ(r)
∗ϕλ(r ′) dλ = 1

r2
δ(r − r ′) (29)

where∗ means the complex conjugation. Therefore, the operator given in (23) contains only
the continuous spectrum occupying the interval(−∞,∞). The same is obviously valid for
equation (17). As a consequence, we have the following statements.

Statement 1.The operators given by equations (17) and (23) are unitarily equivalent to the
operator

M0 = ι

R

(
k
∂

∂k
+

3

2

)
= − ι

R

(
r
∂

∂r
+

3

2

)
. (30)

WhenR→∞we must have compatibility of these results with the standard results of the
Poincaŕe-invariant theory, according to which the mass operator is given byMP = ω1(k)+ω2(k)

whereωi(k) = (m2
i + k2)1/2 (i = 1, 2) andk = |k|. We useg(k2) to denote the function

g(k2) =
2∑
i=1

(
ωi(k)−mi −mi log

ωi(k) +mi
2mi

)
. (31)

Then, it is obvious that

ω1(k) + ω2(k) +
ι

R

(
k
∂

∂k
+

3

2

)
= exp(ιRg(k2))

(
m1 +m2 +

ι

R

(
k
∂

∂k
+

3

2

))
exp(−ιRg(k2)). (32)

We can formulate this result as statement 2.
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Statement 2.The operator

M̃ = ω1(k) + ω2(k) +
ι

R

(
k
∂

∂k
+

3

2

)
(33)

is unitarily equivalent to the operator given by equation (17).

If one considers the action of the operatorM̃ on functionsf (k) satisfying the conditions

|∂f (k)/∂k| � R|f (k)| (34)

then the action ofM̃ is practically indistinguishable from the action ofMP.
For the case of three particles with massesm1,m2 andm3 we can introduce the standard

Jacobi variables

k12 = m2p1−m1p2

m1 +m2
K12 = m3(p1 + p2)− (m1 +m2)p3

m1 +m2 +m3
. (35)

Then by analogy with this consideration one can show that in the approximation when only
the representations containing the UIRs of the principal series are taken into account the three-
particle mass operator is unitarily equivalent to

M̃123= (M2
12P +K2

12)
1/2 + ω3(K12) +

ι

R

(
k12

∂

∂k12
+

3

2

)
+
ι

R

(
K12

∂

∂K12
+

3

2

)
(36)

whereMP
12 is the mass operator of the system given by equation (12) in the Poincaré-invariant

theory. There exists a subspace of functionsf (k12,K12) with the following property: the
action ofM̃123on these functions is practically indistinguishable from the action of the standard
mass operator(M2

12P+K
2
12)

1/2+ω3(K12). The functionsf (k12,K12)should satisfy the property∣∣∣∣∂f (k12,K12)

∂k12

∣∣∣∣, ∣∣∣∣∂f (k12,K12)

∂K12

∣∣∣∣� R|f (k12,K12)|. (37)

It is also clear that these results can be generalized to the case whenN is arbitrary.

4. Unitary equivalence of free and interacting representations in the SO(1, 4)-invariant
theory

If the particles in the system under consideration interact with each other then the representation
generators describing this system are interaction-dependent but they should satisfy the
commutation relations of (2). By analogy with the procedure proposed by Bakamdjian and
Thomas in Poincaré-invariant theories [14], we can introduce the interaction by replacing
the free mass operatorMdS in equation (22) by an interacting mass operatorM̂dS. Then the
relations of (22) will obviously be satisfied if̂MdS acts only through the internal variables and
commutes withS.

In the general case the spin and momentum operators in equation (22) can be interaction-
dependent too but, by analogy with Poincaré-invariant theories (see, e.g., [11]) it is natural to
assume that they have the same spectrum as the corresponding free operators. Therefore, one
can eliminate the interaction dependence of the spin and momentum operators by using a proper
unitary transformation. In Poincaré-invariant theories the corresponding unitary operators are
known as Sokolov packing operators (see, e.g., [11, 15–19]).

In this paper we will consider the representation generators in Bakamdjian–Thomas (BT)
form, but this discussion gives us grounds to think that if only the contribution of the UIRs of
the principal series are taken into account then any representation describing the interacting
system is unitarily equivalent to the representation in BT form.
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Consider first, in detail the case of two free particles in the non-relativistic approximation.
We can writeM̃ −m1−m2 in the form

Mnr = k2

2m12
+
ι

R

(
k
∂

∂k
+

3

2

)
(38)

wherem12 = m1m2/(m1 + m2) is the reduced mass of particles 1 and 2. In coordinate
representation this operator has the form

Mnr = − 1

2m12
− ι

R

(
r
∂

∂r
+

3

2

)
(39)

where1 = (∂/∂r)2.
It is obvious that

Mnr = exp

(
ιRk2

4m12

)
M0 exp

(
− ιRk2

4m12

)
(40)

whereM0 is given by equation (30). Therefore, we have the following statement.

Statement 3.The operatorsM0 andMnr are unitarily equivalent. In particular,Mnr contains
only the continuous spectrum occupying the interval(−∞,∞).

The Hilbert space of functions satisfying conditions (24) or (25) can be decomposed into
the subspacesHlm such that the elements ofHlm have the form

f (k) = Ylm(k/k)f (k) ϕ(r) = Ylm(r/r)ϕ(r). (41)

Ylm is the spherical function,ϕ(r) satisfies condition (26) andf (k) satisfies the analogous
condition in momentum representation.

In this representation the eigenvalue problem for the operatorMnr inHlm does not depend
on l andm

k2

2m12
fλ(k) +

ι

R

(
k

dfλ(k)

k
+

3

2
fλ(k)

)
= λfλ(k). (42)

The solution of this equation is

fλ(k) = 1

k

(
R

2πk

)1/2

exp

(
ιR

(
k2

4m12
− λ logk

))
. (43)

In coordinate representation the eigenvalue problem for the operatorMnr in Hlm reads

− 1

2m12r2

d

dr

(
r2 dϕλl(r)

dr

)
+
l(l + 1)

2m12r2
ϕλl(r)− ι

R

(
r

dϕλl(r)

dr
+

3

2
ϕλl(r)

)
= λϕλl(r). (44)

The relation between the functionsfλ(k) and ϕλl(r) is given by the radial Fourier
transform

ϕλl(r) = R1/2

π
(−ι)l

∫ ∞
0
jl(kr)k

1/2 exp

(
ιR

(
k2

4m12
− λ logk

))
dk (45)

where

jl(kr) =
(
π

2kr

)1/2

Jl+1/2(kr) (46)

is the spherical Bessel function.
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The integral in equation (45) can be calculated analytically. We useγ 2 to denote
−ιR/4m12. Then [20]

ϕλl(r) =
(
R

2πr

)1/2
(−ι)l

20(l + 3/2)
γ ιλR−1

(
r

2γ

)l+1/2

×0
(
l

2
+

3

4
− ιλR

2

)
1F1

(
l

2
+

3

4
− ιλR

2
; l +

3

2
; r

2

4γ 2

)
(47)

where0 is the gamma function and1F1 is the hypergeometric function (in [20] a general case
is considered which requires Re(γ 2) > 0 but in our case it is also possible to use the result of
[20] if Re(γ 2) = 0).

As follows from equation (47), whenr → 0, the functionϕλl(r) is proportional torl . This
fact is clear from analogy with conventional quantum mechanics. Indeed, by analogy with the
standard investigation of radial Schrödinger equations, one can expect that atr → 0 the first
two terms in equation (44) are dominant. It is well known that the only regular solution of
such conditions is proportional torl .

Let us now consider the asymptotic behaviour ofϕλl(r) whenr →∞. It is convenient to
use not equation (47) but the original integral in (45). Introducing the new integration variable
t = kr and using equation (46) one arrives at the following asymptotic result

ϕλl(r) = (−ι)l
r

(
R

2πr

)1/2

exp(ιλR)
∫ ∞

0
Jl+1/2(t) exp(−ιRλ log t) dt. (48)

Since [20]∫ ∞
0
Jl+1/2(t) exp(−ιRλ log t) dt = 2−ιRλ0

(
l

2
+

3

4
− ιλR

2

)/
0

(
l

2
+

3

4
+
ιλR

2

)
(49)

comparison of equations (44), (48) and (49) with equations (27) and (28) shows that atr →∞
one can neglect the first two terms of equation (44).

We can normalize functionsϕλl(r) as∫ ∞
0
ϕλl(r)

∗ϕλl(r)r2 dr = δ(λ− λ′) (50)

and any functionϕ(r) from internal Hilbert space can be written as

ϕ(r) =
∑
lm

∫ ∞
−∞

clm(λ)Ylm(r/r)ϕλl(r) dλ. (51)

Now, we proceed to the case of interacting particles and consider the operator

M̂nr = − 1

2m12
+ V (r)− ι

R

(
r
∂

∂r
+

3

2

)
. (52)

The eigenvalue problem for this operator inHlm has the form

− 1

2m12r2

d

dr

(
r2 dψλl(r)

dr

)
+
l(l + 1)

2m12r2
ψλl(r) + V (r)ψλl(r)− ι

R

(
r

dψλl(r)

dr
+

3

2
ψλl(r)

)
= λψλl(r). (53)

Suppose thatV (r)r2→ 0 whenr → 0. Then, the third term in equation (55) is negligible
in comparison with the first two whenr → 0 (see, e.g., [21]). Therefore, the asymptotic
behaviour of the functionψλl(r)atr → 0 is the same as that ofϕλl(r), i.e.ψλl(r) is proportional
to rl . On the other hand, ifV (r) → 0 whenr → ∞ then the third term in equation (55) is
negligible in comparison with the fourth whenr →∞. Therefore, the asymptotic behaviour
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of ψλl(r) at r →∞ also coincides with that ofϕλl(r), i.e.ψλl(r) at r →∞ is proportional to
the expression given by equation (48).

Since functionsψλl(r) andϕλl(r) have the same asymptotic behaviour atr → 0 and
r → ∞, we conclude that the operatorsMnr and M̂nr have the same spectrum. Because
normalization of the eigenfunctions belonging to the continuous spectrum is fully determined
by the asymptotic behaviour of these functions atr → ∞ [21], we can normalize functions
ψλl(r) in the same way asϕλl(r)∫ ∞

0
ψλl(r)

∗ψλl(r)r2 dr = δ(λ− λ′). (54)

Then, we can define the operatorU as follows. Ifϕ(r) is given by equation (51) then

Uϕ(r) =
∑
lm

∫ ∞
−∞

clm(λ)Ylm(r/r)ψλl(r) dλ. (55)

The operatorU commutes withS by construction. As follows from equations (50) and (54),
this operator is unitary and̂Mnr = UMnrU

−1. Therefore, we have statement 4.

Statement 4.The operatorsM̂nr andMnr are unitarily equivalent.

In the non-relativistic approximation we have to consider functionsf (k) for which the
important values ofk are much smaller than the masses of the particles in question. Suppose
also thatR is very large and the functions satisfy the conditions of equation (34). In coordinate
representation the actions ofMnr andM̂nr on such functions are practically indistinguishable
from the actions of the operators

MG
nr = −

1

2m12
M̂G

nr = −
1

2m12
+ V (r) (56)

respectively (‘G’ means ‘Galilei’). However, the operatorsMG
nr andM̂G

nr are not necessarily
unitarily equivalent. For example, ifV (r) = −constant/r and constant> 0 then the operator
MG

nr only has a continuous spectrum in the interval [0,∞) while M̂G
nr has also a discrete

spectrum at some negative values ofλ. SinceMG
nr andM̂G

nr in this case have different spectra,
they cannot be unitarily equivalent.

The result formulated in statement 4 could be expected from physical considerations.
Indeed, ifV (r) is not too singular whenr → 0, the phenomenon known as the ‘fall onto
the centre’ (see, e.g., [21]) does not occur and the spectra ofMnr and M̂nr are defined by
the asymptotic of the eigenfunctions of these operators atr → ∞. Even ifR is very large,
there exist such values ofr that the cosmological repulsion becomes dominant in comparison
with kinetic and potential energies. Since this repulsion is present in bothMnr andM̂nr, these
operators have the same spectrum and, therefore, are unitarily equivalent.

Consider now a system ofN particles with arbitrary velocities and suppose that the
interactions between the particles can be described only in terms of the degrees of freedom
characterizing the particles. The gravitational and electromagnetic interactions are not very
singular in the sense that they fall off at infinity and do not lead to the fall onto the centre [21].
In the case of strong interactions the problem exists how to describe the interaction of coloured
objects at large distances. Such an interaction is often modelled by attractive potentials which
at infinity are proportional tor. In this case the force of attraction does not depend onr

and, therefore, can be neglected in comparison with the cosmological repulsion. Therefore,
it is natural to say that at infinity all realistic interactions are negligible in comparison with
the cosmological repulsion (or by definition, the necessary condition for any interaction to be
realistic is to be small in comparison with the cosmological repulsion whenr → ∞). For



Interactions in de Sitter invariant theories 1237

these reasons, in the case of realistic interactions, the asymptotic of the eigenfunctions of the
interacting mass operator is again defined by the cosmological repulsion and is the same as the
asymptotic of the eigenfunctions of the free mass operator discussed in the previous section.
In turn, if the unitary operator realizing the equivalence of two mass operators commutes with
S and the corresponding representations can be realized in BT form then they are unitarily
equivalent. Therefore, we can formulate the following statement.

Statement 5. In SO(1, 4)-invariant theory the interacting mass operator of the system of
N particles described by the UIRs of the principal series is unitarily equivalent to the free
mass operator.

5. Discussion

A standard problem of perturbation theory for linear operators (see, e.g., [22]) is as follows. Let
A andÂ be self-adjoint operators on Hilbert space. Suppose they have the same (absolutely)
continuous spectrum (this is treated as the property ofÂ to be in some sense a small perturbation
of A). Suppose also for simplicity thatA does not contain other points of the spectrum.
Consider the wave operators

W±(A, Â) = s − lim
t→±∞exp(ιÂt) exp(−ιAt) (57)

wheres − lim means the strong limit. IfÂ has the same spectrum asA then there exist
conditions whenW± are unitary and

Â = W±(A, Â)AW±(A, Â)−1 (58)

i.e.A andÂ are unitarily equivalent. IfÂ also contains the discrete spectrum, operatorsA

andÂ cannot be unitarily equivalent but there exist conditions whenW± are isometric and the
S-operatorS = W ∗+W− is unitary.

As shown in the previous section, in the SO(1, 4)-invariant theory the interacting mass
operatorM̂ of a many-particle system has the same spectrum as the free mass operatorM and
these operators are unitarily equivalent. The absence of bound states is a consequence of the
fact that at large distances the cosmological repulsion is dominant. The choice of the unitary
operator realizing the equivalence ofM̂ andM is obviously not unique. By analogy with the
standard results of perturbation theory for linear operators one could expect that a possible
choice isW±(M, M̂).

If R is very large and one considers only the subspaceHP of functions satisfying the
conditions analogous to (34), (37) etc then the actions ofM̂ andM on these functions are
practically indistinguishable from the actions of the corresponding operators in the Poincaré-
invariant theory (obtained fromM andM̂ by neglecting cosmological repulsion). Therefore,
in the SO(1, 4)-invariant theory there exist quasi-bound states: their lifetime is very large and
goes to infinity whenR → ∞. It is clear that there exist conditions when the quasi-bound
states are practically indistinguishable from bound ones. The finite lifetime is related to the
fact that theoretically there exists a non-zero probability for quasi-bound particles to pass
through the barrier separating the usual and cosmological distances. However, in practice this
probability can be negligible.

It is important to note that the subspaceHP, where the results of Poincaré-invariant theory
are valid, is only a small part of the full Hilbert spaceH . In particular, iff ∈ HP then
exp(ιM̂t) and exp(−ιMt) cannot belong toHP if t is of orderR/c. Therefore, it is natural to
think that the standard scattering problem inHP is meaningful only ifct � R.

In local quantum field theories the Hilbert space for the system under consideration
is the Fock space describing a system of infinite numbers of particles. It is well known
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(see, e.g., [23]), that there exist serious mathematical difficulties in constructing well defined
representation operators of the Poincaré group in such theories. The problem becomes much
more complicated if the symmetry group is the group of motions of a curved spacetime (see,
e.g., [24]). These considerations pose the problem whether in all realistic SO(1, 4)-invariant
theories the interacting and free representation generators are unitarily equivalent. Another
important problem is whether divergencies in standard local field theories are related to the
fact that loop contributions to theS-matrix involve not only a set of states belonging toHP

but a much wider set of states for which it is not possible to neglect the effects of de Sitter
invariance. In other words, these effects can play a role of regularizers for usual divergent
expressions in the standard approach. For the case of SO(2, 3) symmetry such a possibility
has been considered in [25].

If the interacting and free representation generators are unitarily equivalent then the very
notion of interaction is not fundamental. Indeed, in this casethere is no need to introduce
interaction terms into the operators: we can always work with free operators and physics is
defined by the subset of states important in the processes under consideration. The subsets
corresponding to different interactions are connected with each other by unitary transformations
which necessarily depend onR. Indeed, if one reduces the free and interacting operators onto
HP and neglects cosmological repulsion, then, as noted before, the operators obtained in such
a way are not unitarily equivalent in the general case.

In particular, one might think that for the situation corresponding to the pair of operators
Mnr andM̂nr (see the previous section) the fundamental problem is not the choice of the potential
V (r)which should be added toMnr but the choice of the unitary operatorU realizing the unitary
equivalence ofMnr andM̂nr. In the framework of such an approach one might think that the
fundamental quantities are those defining the operatorU . In this case the gravitational constant,
electric charges etc are functions of more fundamental quantities andR, in agreement with
the famous Dirac hypothesis [26] about the dependence of physical constants on cosmological
parameters. Moreover, if unitary equivalence of free and interacting representation operators
for all realistic interactions has a place then they are fully defined by the present state vector
of the Universe. This can be treated as a quantum analogue of the Mach principle according
to which the local physical laws are defined by the distribution of masses in the Universe (the
discussion of Mach’s principle and its relation to general relativity and Dirac cosmology can
be found in wide literature—see, e.g., [27] and references therein).

In summary, SO(1, 4)-invariant theories have rather unusual properties, in particular the
mass operator has only continuous spectrum in the interval(−∞,∞), bound states do not
exist and the representations describing free and interacting systems are unitarily equivalent.
At the same time SO(1, 4) invariance does not contradict the existing experimental data and,
therefore, the possibility exists that the SO(1, 4) group is the symmetry group of nature. For
these reasons the investigation of SO(1, 4)-invariant theories is of indubitable interest.
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